LHCb Physics and 2010-11 prospects

Stefano Perazzini On behalf of LHCb Collaboration MENU2010 2nd June 2010

OUTLINE

- Physics:
 - Flavor physics and CPV in the quark sector
 - Search for New Physics
- The LHCb Experiment
 - The detector
 - Data taking in 2010-11 run
- Core analyses and prospects for 2010-11

Flavor physics in quark sector

- Interacting (flavor) eigenstates are mixtures of mass eigenstates described in the SM by the CKM matrix
- New particles in loop diagrams may modify measured quantities related to V_{CKM} elements

Measure differences in the behaviour of particles under CP transformation

Look for discrepancy with respect to prediction

Status of the Art

- Good agreement from all measurements
- Still open windows to NP corrections at 10-20%
 - σ(γ) ~ 15-20°
 - B_s mixing phase
 - Rare decays:
 - $B_s \rightarrow \mu^+ \mu^-$: BR not measured (sensitive to NP)
 - $B_d \rightarrow K^* \mu^+ \mu^-$: not clear measurements status
 - Charm sector: mixing induced CP-violation needs more precise measurements

LHCb Detector

Detector status (I)

Detector status (II)

2010-11 Data Taking

	Assumed co	onditions in MC stu	Mainwork about I HCb key	
√s	σ_{bb}	2	1 year integrated luminosity	measurements (arXiv:0912.4179v2 [hep-ex])
14 TeV	500 μb	2x10 ³² cm ⁻² s ⁻¹	2 fb ⁻¹	
1.04 0.93 0.83 0.72 0.62 0.62	bb		8.310 7.479 6.648 5.817 4.986 4.155	Pythia

3.324

2.493

1.662

0.831

0.000

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

beam energy (TeV)

X

0.44

2011 expected conditions						
√s	σ_{bb}	$\sigma_{\sf cc}$	L			
7 TeV	500 μb	4.7 mb	~10 ³² cm ⁻² s ⁻¹			

• Some loss in signal yield due to \sqrt{s} =7 TeV

x 0.57

5.0 5.5 6.0 6.5 7.0

6.4

- Release of trigger thresholds
- $\varepsilon_{\text{trig}}^{\text{charm}} \sim 40-50\%$

beam energy (TeV)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

- Expected 0.1 fb⁻¹ of integrated luminosity
 - \mathcal{L} close to design value ٠
- $\epsilon_{trig}^{charm} \sim 10\%$ $\epsilon_{trig}^{B} \sim 75-80\%$ $\epsilon_{trig}^{B \to \mu X} > 90\%$
- Expected 1 fb⁻¹ of integrated luminosity 8

0.416

0.312

0.208

0.104

0.000

ь

bb production

J/ Ψ production

Mixing and CPV in charm

- CPV negligible in the SM
 - window for NP discovery
- x and y affect precision on CPV measurements

 $A_{CP} \sim A_M y \cos \Phi - x \sin \Phi$

- Neutral D mixing is nowadays a matter of facts
- More precise measurements needed for CPV programme

Mixing and CPV in charm

D⁰ in LHCb @ 800µb⁻¹

D⁰ in LHCb @ 800µb⁻¹

What about B decays?

γ from trees

Many parameters involved can dilute sensibility to γ

$$\begin{array}{l} \mathsf{R}_{\mathsf{CP}} \sim 2 r_{\mathsf{B}} \text{cos}(\delta_{\mathsf{B}}) \text{cos}(\gamma) \\ \mathsf{A}_{\mathsf{CP}} \sim 2 r_{\mathsf{B}} \text{sin}(\delta_{\mathsf{B}}) \text{sin}(\gamma) \ / \ \mathsf{R}_{\mathsf{CP}} \end{array}$$

Need to over constrain the system with various channels

- 1. GLW (Gronau, London, Wyler):
 - Exploit asymmetries for D⁰ decaying to CP-even or CP-odd eigenstates
 - $D^0 \rightarrow KK, D^0 \rightarrow \pi\pi$
 - Also $B^0 \rightarrow D^0(\rightarrow hh)K^*$
- 2. ADS (Atwood, Dunietz, Soni):
 - Exploit asymmetries for D⁰ to flavor specific channel ($D^0 \rightarrow K\pi$, $D^0 \rightarrow K\pi\pi\pi$)
- 3. Dalitz analysis (Giri, Grossman, Soffer and Zupan):
 - Exploit asymmetries in $D^0 \rightarrow K_S^0 \pi \pi$ and $D^0 \rightarrow K_S^0 KK$

• σ_{LHCb} ~ 7° @ 1fb⁻¹

B_s mixing phase

- Very precisely predicted in SM $\rightarrow \beta_s = 0.02$
- Tevatron measurements give us a hint for NP
- Golden channel: $B_s \rightarrow J/\Psi \Phi$
 - Penguin pollution negligible
 - J/ $\Psi \rightarrow \mu\mu$: very clean signal for LHCb

History: Old result: $\beta_s = [0.10, 1.42] @ 95\%$ C.L. New result: $\beta_s = [-0.1, 0.7]$ @ 95% C.L.

B_s mixing phase

$B_s \rightarrow \mu \mu (I)$

- Flavor Changing Neutral Current process
- BR($B_s \rightarrow \mu\mu$) = (3.35±0.32)x10⁻⁹ [Blanke et al., JHEP 0610:003,2006]
- Very sensible to NP \rightarrow BR altered from SM prediction

$|\mathsf{B}_{\mathsf{s}} \rightarrow \mu\mu (\mathrm{II})|$

- Strategy (as at Tevatron):
 - Very loose selection
 - Loooking for signal using a global likelihood method
- Calibration already started using $K_s^0 \rightarrow \pi^+\pi^-$ and

$B_s \rightarrow \mu \mu (II)$

- Trigger must to be as efficient as possible:
 - Calibration with $J/\Psi{\rightarrow}\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$

$B_s \rightarrow \mu \mu (III)$

- Importance of MuonID:
 - Mis-ID: using ${\rm K_S}^0$ and Λ as source of π and p
 - MuonID: using $J/\Psi \rightarrow \mu^+ \mu^-$

The point at A_{FB} = 0 can probe various NP models

$\mathsf{B}^{0} \rightarrow \mathsf{K}^{*} \mu^{+} \mu^{-} (\mathsf{II})$

No time to mention

- V⁰ analysis:
 - $-\Lambda$, anti- Λ and K_s^0 production
 - (Λ and anti- Λ)/K_s⁰ ratio
- CP asymmetries in gluonic $b \rightarrow s$ penguin decays
 - $B_s \rightarrow \varphi \varphi, \ K^*K^*$
- Charmless hadronic 2-body and 3-body B Decays
- Radiative penguin decays
 - $B_s \rightarrow \phi \gamma, B \rightarrow K^* \gamma$
- More CKM metrology
 - − sin2β ($B_d \rightarrow J/\psi K_S$)
 - α (B→ρπ)

Conclusions

- 1. LHC has started:
 - a) The lower centre-of-mass energy of LHC loss will not affect dramatically LHCb performances \rightarrow wait for a measurement of σ_{bb}
 - b) Luminosity conditions opened a very promising window on charm and is expected to approach the LHCb design luminosity in 2011
- 2. LHCb status is good:
 - a) Already seen a lot of well known strange and charm peaks
 - b) Calibration well underway (alignment and PID)
 - c) First B candidates observed
- 3. Physics programme:
 - a) Charm analysis will exploit several million of D meson decays
 - b) B physics core analyses can lead to competitive measurements already with 0.1 fb⁻¹
 - c) 1 fb⁻¹ should lead to quite exciting results and New Physics